1) 0.(7) Представим это в виде суммы бесконечно убывающей геометрической прогрессии: 0.(7)=0.7+0.07+0.007+... Здесь первый член равен b1=0.7, знаменатель q=0.1. Тогда сумма прогрессии равна S=b1/(1-q)=0.7/(1-0.1)=0.7/0.9=7/9 2) 3.(18)=3 + 0.(18) 0.(18) = 0.18 + 0.0018 + 0.000018 + b1=0.18, q=0.01 Тогда S=b1/(1-q)=0.18/(1-0.01)=0.18/0.99=18/99=2/11 То есть 3.(18)=3+2/11=35/11
0,(7) = 0,7777777... = 0,7 + 0,007 + 0,0007 + 0,00007 + ..... Очевидно, что слагаемые в сумме составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,7 и знаменателем 0,1.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии:
3,(18) = 3 + 0,(18) = 3 + 0,18 + 0,0018 + 0,000018 + 0,00000018 + ... Слагаемые в сумме, начиная со второго слагаемого, составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,18 и знаменателем 0,01.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии:
Представим это в виде суммы бесконечно убывающей геометрической прогрессии:
0.(7)=0.7+0.07+0.007+...
Здесь первый член равен b1=0.7, знаменатель q=0.1.
Тогда сумма прогрессии равна S=b1/(1-q)=0.7/(1-0.1)=0.7/0.9=7/9
2) 3.(18)=3 + 0.(18)
0.(18) = 0.18 + 0.0018 + 0.000018 +
b1=0.18, q=0.01
Тогда S=b1/(1-q)=0.18/(1-0.01)=0.18/0.99=18/99=2/11
То есть 3.(18)=3+2/11=35/11
Очевидно, что слагаемые в сумме составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,7 и знаменателем 0,1.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии:
3,(18) = 3 + 0,(18) = 3 + 0,18 + 0,0018 + 0,000018 + 0,00000018 + ...
Слагаемые в сумме, начиная со второго слагаемого, составляют бесконечно убывающую геометрическую прогрессию с первым членом 0,18 и знаменателем 0,01.
Тогда по формуле нахождения суммы бесконечной убывающей геометрической прогрессии: