A) y = x², x ≥ 0 Возьмём две точки x₁ и x₂, такие, что x₁ > x₂ y(x₁) = x₁² y(x₂) = x₂² Найдём разность значений функции: y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂) Т.к. x ≥ 0, то x₁ + x₂ > 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₁) > 0, отсюда делаем вывод, что функция возрастающая (при увеличении аргумента увеличивается и значение функции).
b) y = x², x ≤ 0 Делаем то же самое и получаем: y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂) Т.к. x ≤ 0, то x₁ + x₂ < 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₂) < 0, отсюда делаем вывод, что функция убывающая (при увеличении аргумента значение функции уменьшается).
Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
Возьмём две точки x₁ и x₂, такие, что x₁ > x₂
y(x₁) = x₁²
y(x₂) = x₂²
Найдём разность значений функции:
y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂)
Т.к. x ≥ 0, то x₁ + x₂ > 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₁) > 0, отсюда делаем вывод, что функция возрастающая (при увеличении аргумента увеличивается и значение функции).
b) y = x², x ≤ 0
Делаем то же самое и получаем:
y(x₁) - y(x₂) = x₁² - x₂² = (x₁ + x₂)(x₁ - x₂)
Т.к. x ≤ 0, то x₁ + x₂ < 0, т.к. x₁ > x₂, то x₁ - x₂ > 0. Значит, y(x₁) - y(x₂) < 0, отсюда делаем вывод, что функция убывающая (при увеличении аргумента значение функции уменьшается).
Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х.
Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2.
Итак, найдем х, при котором выражение принимает наименьшее значение:
(х+4)²=0
х+4=0
х=0-4
х=-4 - при таком значении х значение будет наименьшим.
ответ: наименьшее значение выражения будет 2 при х=-4.