В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
saidazimkkk
saidazimkkk
04.10.2021 07:11 •  Алгебра

Решить 2 интеграла, с объяснением


\int\limit{\frac{dx}{2x-3}} =
\int\limits{\frac{xdx}{\sqrt{x^4-1}}} =
Решить 2 интеграла, с объяснением

Показать ответ
Ответ:
Nekomimi11
Nekomimi11
18.08.2020 22:51

1)\; \; \int \dfrac{dx}{2x-3}=\dfrac{1}{2}\int \dfrac{d(2x-3)}{2x-3}=\dfrac{1}{2}\cdot ln|2x-3|+C\\\\\\2)\ \ \int \dfrac{x\, dx}{\sqrt{x^4-1}}=\dfrac{1}{2}\int \dfrac{2x\, dx}{\sqrt{(x^2)^2-1}}=\dfrac{1}{2}\int \dfrac{d(x^2)}{\sqrt{(x^2)^2-1}}=\dfrac{1}{2}\cdot ln\Big|\, x^2+\sqrt{x^4-1}\, \Big|+C


Решить 2 интеграла, с объяснением
0,0(0 оценок)
Ответ:
РафикЖирафик
РафикЖирафик
18.08.2020 22:51

Объяснение:во вложении

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота