2) (0;4)
4) (-4;-2)
6) (-3;-1) ∪ (3;6)
Объяснение:
Метод интервалов.
2)x²-3x-4=0 x²+x=0
x₁+x₂=3; x₁x₂=-4 x(x+1)=0
x₁=4 ; x₂=-1 x₁=0; x₂=-1
+ || + | - | +
° ° ° ⇒
-1 0 4
(0;4)
4) x²+2x-8=0 x²-4=0
x₁=-4 ; x₂=2 x₁ ₂=±2
+ | - | + || +
-4 -2 2
(-4;-2)
6) x²-5x-6=0 -x²=-9
x₁=6 ; x₂=-1 x₁ ₂=±3
- | + | - | + | -
° ° ° ° ⇒
-3 -1 3 6
(-3;-1) ∪ (3;6)
aₙ = (n²+1) / √n
Итак, запишем нашу последовательность;
1 2 3 4 ... n ... - номера членов последовательности
2; 5/√2; 10/√3; 17/2; ? ... - члены последовательности
Запишем нашу последовательность в виде:
2/√1; 5/√2; 10/√3; 17/√4;
Посмотрим на знаменатели. Правило очевидно: в знаменателе - квадратный корень из номера последовательности (√n)
Далее рассмотрим последовательность чисел, стоящих в числителе:
1 2 3 4 ...
2; 5: 10: 17 ...
Рассмотрим последовательность квадратов номеров:
1; 4 : 9: 16 ..
то есть:
2 = 1² + 1
5 = 2² + 1
10 = 3² + 1
17 = 4² + 1
Числитель n-го члена: (n²+1)
Итак, n-ый член последовательности
2) (0;4)
4) (-4;-2)
6) (-3;-1) ∪ (3;6)
Объяснение:
Метод интервалов.
2)x²-3x-4=0 x²+x=0
x₁+x₂=3; x₁x₂=-4 x(x+1)=0
x₁=4 ; x₂=-1 x₁=0; x₂=-1
+ || + | - | +
° ° ° ⇒
-1 0 4
(0;4)
4) x²+2x-8=0 x²-4=0
x₁=-4 ; x₂=2 x₁ ₂=±2
+ | - | + || +
° ° ° ⇒
-4 -2 2
(-4;-2)
6) x²-5x-6=0 -x²=-9
x₁=6 ; x₂=-1 x₁ ₂=±3
- | + | - | + | -
° ° ° ° ⇒
-3 -1 3 6
(-3;-1) ∪ (3;6)
aₙ = (n²+1) / √n
Объяснение:
Итак, запишем нашу последовательность;
1 2 3 4 ... n ... - номера членов последовательности
2; 5/√2; 10/√3; 17/2; ? ... - члены последовательности
Запишем нашу последовательность в виде:
2/√1; 5/√2; 10/√3; 17/√4;
Посмотрим на знаменатели. Правило очевидно: в знаменателе - квадратный корень из номера последовательности (√n)
Далее рассмотрим последовательность чисел, стоящих в числителе:
1 2 3 4 ...
2; 5: 10: 17 ...
Рассмотрим последовательность квадратов номеров:
1 2 3 4 ...
1; 4 : 9: 16 ..
то есть:
2 = 1² + 1
5 = 2² + 1
10 = 3² + 1
17 = 4² + 1
Числитель n-го члена: (n²+1)
Итак, n-ый член последовательности
aₙ = (n²+1) / √n