ответ:Областью значений некоторой функции f(x) называется множество, содержащее все значения которые могут получиться при подстановке в эту функцию всех допустимых значений аргумента x. Область значений функции обозначается E(f).
Проиллюстрируем вышесказанное на конкретном примере. Рассмотрим функцию f(x) = e−x2, график которой изображён на рисунке.
График функции e^(-x^2)
Из графика нетрудно заметить, что какие бы значения аргумента x мы не подставляли бы в функцию f(x), возвращаемое значение всегда будет находиться в диапазоне от 0 до 1. Таким образом, область значений рассматриваемой функции от 0 до 1.
Данный факт можно записать следующим образом:
E(f) ∈ (0; 1]
Наш онлайн калькулятор построен на основе системы Wolfram Alpha. Калькулятор позволяет найти область определения практически любой
1) Проведем высоту BD к стороне D, такую, что АD = 16 и DC = 14
2) Найдем сторону АС. АС = AD + DC = 14+16 = 30
3) Найдем сторону BC. По теореме Пифагора: BC^2 = BD^2 + DC^2 = 8^2 + 14^2 = 64 + 196 = 260. Значит BC = √260
4) Найдем сторону AB. По теореме Пифагора: AB^2 = AD^2 + BD^2 = 16^2 + 8^2 = 256 + 64 = 320. Значит AB = √320
ЗАДАЧА 2
1) Найдем площадь треугольника BCH. (2*7)/2 = 7
2) Проведем высоту DL к стороне AB. Треугольники DLA и BCH равны, следовательно и их площади равны, следовательно сумма их площадей равна 7*2 = 14.
3) Найдем площадь четырехугольника LBHD. (18-7)*2 = 22
4) Найдем площадь всего параллелограмма. 14+22 = 36
ЗАДАЧА 3
1) Проведем высоты BL и CH к основанию AD. Рассмотрим треугольник СDH. ∠СHD = 90° (так как CH - высота) и ∠СDH = 45° (по условию). Значит ∠DCH = 45°. В треугольнике два угла равны, значит он равнобедренный. Значит CH = HD.
2) Найдем BC. BC = AD - 2HD (AL = HD) = 98 - 2*14 = 70
3) Найдем площадь четырехугольника BCHL. 70*14 = 980
4) Найдем площадь треугольника CDH. (14*14)/2 = 98
ответ:Областью значений некоторой функции f(x) называется множество, содержащее все значения которые могут получиться при подстановке в эту функцию всех допустимых значений аргумента x. Область значений функции обозначается E(f).
Проиллюстрируем вышесказанное на конкретном примере. Рассмотрим функцию f(x) = e−x2, график которой изображён на рисунке.
График функции e^(-x^2)
Из графика нетрудно заметить, что какие бы значения аргумента x мы не подставляли бы в функцию f(x), возвращаемое значение всегда будет находиться в диапазоне от 0 до 1. Таким образом, область значений рассматриваемой функции от 0 до 1.
Данный факт можно записать следующим образом:
E(f) ∈ (0; 1]
Наш онлайн калькулятор построен на основе системы Wolfram Alpha. Калькулятор позволяет найти область определения практически любой
Объяснение:
ЗАДАЧА 1
1) Проведем высоту BD к стороне D, такую, что АD = 16 и DC = 14
2) Найдем сторону АС. АС = AD + DC = 14+16 = 30
3) Найдем сторону BC. По теореме Пифагора: BC^2 = BD^2 + DC^2 = 8^2 + 14^2 = 64 + 196 = 260. Значит BC = √260
4) Найдем сторону AB. По теореме Пифагора: AB^2 = AD^2 + BD^2 = 16^2 + 8^2 = 256 + 64 = 320. Значит AB = √320
ЗАДАЧА 2
1) Найдем площадь треугольника BCH. (2*7)/2 = 7
2) Проведем высоту DL к стороне AB. Треугольники DLA и BCH равны, следовательно и их площади равны, следовательно сумма их площадей равна 7*2 = 14.
3) Найдем площадь четырехугольника LBHD. (18-7)*2 = 22
4) Найдем площадь всего параллелограмма. 14+22 = 36
ЗАДАЧА 3
1) Проведем высоты BL и CH к основанию AD. Рассмотрим треугольник СDH. ∠СHD = 90° (так как CH - высота) и ∠СDH = 45° (по условию). Значит ∠DCH = 45°. В треугольнике два угла равны, значит он равнобедренный. Значит CH = HD.
2) Найдем BC. BC = AD - 2HD (AL = HD) = 98 - 2*14 = 70
3) Найдем площадь четырехугольника BCHL. 70*14 = 980
4) Найдем площадь треугольника CDH. (14*14)/2 = 98
5) Найдем общую площадь: 980+98*2 = 1176