Как вариант могу предложить следующее решение. Из свойств геометрической прогрессии квадрат члена геометрической прогрессии равен произведению предшествующего и последующего членов, то есть b₂²=b₁*b₃. Найдём b₃: b₃=26-b₁ - из условия. Отсюда b₂=√(b₁(26-b₁). Теперь подставим все найденные значения b₁+√(26b₁-b₁²)+(26-b₁)=31 b₁+√(26b₁-b₁²)+26-b₁=31 √(26b₁-b₁²)=31-26 √(26b₁-b₁²)=5 26b₁-b₁²=25 -b₁²+26-25=0 D=26²-4*(-1)*(-25)=676-100=576 1) b₁=(-26-24)/-2=25 2) b₁=(-26+24)/-2=1
Получили два корня уравнения. Найдём остальные члены геометрической прогрессии. 1) b₂=√25*(26-25)=√25=5 b₃=26-25=1 q=1/5 - геометрическая прогрессия убывающая
Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.[1]
Пример алгебраического выражения:
«Алгебраическое выражение» — понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.
Понятие алгебраического выражения можно дать и несколько иначе — это комбинация чисел, операторов, группировочных символов (скобок)) и/или свободных и связанных переменных, значение которых известно или может быть определено.
Из свойств геометрической прогрессии квадрат члена геометрической прогрессии равен произведению предшествующего и последующего членов, то есть b₂²=b₁*b₃. Найдём b₃:
b₃=26-b₁ - из условия.
Отсюда b₂=√(b₁(26-b₁). Теперь подставим все найденные значения
b₁+√(26b₁-b₁²)+(26-b₁)=31
b₁+√(26b₁-b₁²)+26-b₁=31
√(26b₁-b₁²)=31-26
√(26b₁-b₁²)=5
26b₁-b₁²=25
-b₁²+26-25=0
D=26²-4*(-1)*(-25)=676-100=576
1) b₁=(-26-24)/-2=25 2) b₁=(-26+24)/-2=1
Получили два корня уравнения. Найдём остальные члены геометрической прогрессии.
1) b₂=√25*(26-25)=√25=5
b₃=26-25=1
q=1/5 - геометрическая прогрессия убывающая
2) b₂=√1(26-1)=√25=5
b₃=26-1=25
q=5/1=5 - геометрическая прогрессия возрастающая
Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.[1]
Пример алгебраического выражения:
«Алгебраическое выражение» — понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.
Понятие алгебраического выражения можно дать и несколько иначе — это комбинация чисел, операторов, группировочных символов (скобок)) и/или свободных и связанных переменных, значение которых известно или может быть определено.