Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид у = f'(x0)(x - x0) + f(x0). Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1 f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x. Здесь ^ - знак возведения в степень, * - знак умножения. Найдем значение производной f'(x) в точке х = х0 = 1 f'(x0) = f'(1) = 3*1^2 - 20*1 = -17. Найдем значение функции f(x) в точке х = х0 = 1 f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8. Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1) y = -17(x - 1) - 8, y = -17x + 9. ответ: у = -17х + 9.
Пусть v - скорость пешехода, 6v - скорость мотоцикла; S - расстояние между пунктами А и В.
Рассмотрим момент времени, когда мотоциклист догнал пешехода. Пусть а - расстояние, которое осталость пройти пешеходу до пункта В.
Мотоциклист потратил время, чтобы доехать до пункта В, отдохнуть там полчаса, прежде чем вернулся. Это время такое:
За это время, пешеход успел пройти:
И ему осталось ещё пройти:
В этот момент мотоциклист отправился обратно. Вторая встреча мотоциклиста с пешеходом произошла через час. Однако в течение это час он полчаса отдыхал и ехал расстояние а. Поэтому это время надо вычесть из 1 часа. А вычитать надо такое время:
Итак, пешеходу и мотоциклисту необходима преодолеть расстояние:
за время:
Составляем уравнение и кое-что находим:
Теперь рассмотрим схему движения с момента их первой встречи и до полного завершения путешествия, для пешехода это пункт В, для мотоциклиста - пункт А. После первой встречи мотоциклист проехал расстояние а, затем отдыхал полчаса и, наконец, вернулся в исходный пункт А. Пешеход же только расстояние а. Т.к. они одновременно попали в указанные пункты, то их время в пути тоже одинаково. Составляем уравнение:
Вроде бы ничего и не получается. Однако обратите внимание на ! А это как раз то, что нам надо. Это время, за которое пешеход преодолеет расстояние S (между А и В), идя со скоростью v. Кроме этого, ранее мы вычислили, что a=2v.
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.
Рассмотрим момент времени, когда мотоциклист догнал пешехода. Пусть а - расстояние, которое осталость пройти пешеходу до пункта В.
Мотоциклист потратил время, чтобы доехать до пункта В, отдохнуть там полчаса, прежде чем вернулся. Это время такое:
За это время, пешеход успел пройти:
И ему осталось ещё пройти:
В этот момент мотоциклист отправился обратно. Вторая встреча мотоциклиста с пешеходом произошла через час. Однако в течение это час он полчаса отдыхал и ехал расстояние а. Поэтому это время надо вычесть из 1 часа. А вычитать надо такое время:
Итак, пешеходу и мотоциклисту необходима преодолеть расстояние:
за время:
Составляем уравнение и кое-что находим:
Теперь рассмотрим схему движения с момента их первой встречи и до полного завершения путешествия, для пешехода это пункт В, для мотоциклиста - пункт А.
После первой встречи мотоциклист проехал расстояние а, затем отдыхал полчаса и, наконец, вернулся в исходный пункт А. Пешеход же только расстояние а. Т.к. они одновременно попали в указанные пункты, то их время в пути тоже одинаково. Составляем уравнение:
Вроде бы ничего и не получается. Однако обратите внимание на ! А это как раз то, что нам надо. Это время, за которое пешеход преодолеет расстояние S (между А и В), идя со скоростью v. Кроме этого, ранее мы вычислили, что a=2v.
Вычисляем:
ответ: 7 час