ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!
3265920
Объяснение:
ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!
1. - 1;
2. 1.
Объяснение:
1. (5^2)^6•(5^7 : 5^4) /(-125)^5 = 5^(2•6) • 5^(7-4)/(-5^3)^5 = 5^12 • 5^3/(-5^15) = 5^15/(-5^15) = -1.
(✓при возведении степени в степень основание оставляем прежним, показатели умножаем;
✓при умножении степеней с одинаковыми основаниями основание оставляем прежним, показатели складываем;
✓при делении степеней с одинаковыми основаниями основание оставляем прежним, показатели вычитаем.)
2. ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = -(3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = - (3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = + (3^9•3^4•3^12)/(3^30 : 3^5) = 3^25/3^25 = 1.