Примем за х количество дней, необходимых 1-й бригаде на постройку, а объем работы за 1, тогда производительность бригады будет равна 1/х, по условию задачи 2-й бригаде нужно х+5 дней, значит ее производительность 1/(х+5). Работая вместе бригады справились с работой за 6 дней, т.е. первая сделала 6/х, а вторая 6/(х+5). Составим и решим уравнение:
ОДЗ: х≠0 и х≠-5 6х+6(х+5)-х(х+5)=0 6х+6х+30-х²-5х=0 -х²+7х+30=0 х²-7х-30=0 по теореме Виета ; т.к. время не может иметь отрицательное значение, то х=-3 не подходит, значит х=10, т.е. 10 дней понадобится 1-й бригаде на постройку кошары самостоятельно ⇒ 2-я бригада затарат х+5=10+5=15 дней.
у = kx + b так как график проходит через начало координат, b = 0. подставим координаты точки М в уравнение 4 = k * (-2.5) Отсюда найдем k = 4/(-2.5) = -1.6 то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений у = -1,6х 3х-2у - 16 = 0 подставив у из первого уравнения во второе, получим 3х + 3,2х - 16 = 0 6,2х = 16 х = 16/6,2= 80/31 тогда у = -1,6 *80/31 = -128/31 То есть искомая точка пересечения (80/31; -128/31)
ОДЗ: х≠0 и х≠-5
6х+6(х+5)-х(х+5)=0
6х+6х+30-х²-5х=0
-х²+7х+30=0
х²-7х-30=0 по теореме Виета
;
т.к. время не может иметь отрицательное значение, то х=-3 не подходит, значит х=10, т.е. 10 дней понадобится 1-й бригаде на постройку кошары самостоятельно ⇒ 2-я бригада затарат х+5=10+5=15 дней.
ответ: 10 дней и 15 дней.
у = kx + b
так как график проходит через начало координат, b = 0.
подставим координаты точки М в уравнение
4 = k * (-2.5)
Отсюда найдем k = 4/(-2.5) = -1.6
то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений
у = -1,6х
3х-2у - 16 = 0
подставив у из первого уравнения во второе, получим
3х + 3,2х - 16 = 0
6,2х = 16
х = 16/6,2= 80/31
тогда у = -1,6 *80/31 = -128/31
То есть искомая точка пересечения (80/31; -128/31)