4+0+...4(2-n)=2n(3-n) Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно 2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k) 3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1)); 4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -? 4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем = 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4) Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2 k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)= =(5-2k)(k+1)=2(2.5-k)(k+1) Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во
1) Сначала решим уравнение. x/2 = (-1)^n * (pi/3) + pi n.
x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z
Если n - четное, т.е. n=2k, то x/2 = pi/3 + 2pi k, x = 2pi/3 + 4pi k. Если n - нечетное, т.е. n = 2k + 1, то x/2 = -pi/3 +(2k+1) pi = -pi/3 +2pi k + pi = 2pi/3 + 2pi k,
x = 4pi/3 + 4pi k
2) Решим неравенство. Так основание pi>1, то x - 4pi < pi, x < 5pi. ОДЗ неравенства:
x - 4pi > 0, x>4pi. Совмещаем выделенные неравенства: 4pi < x < 5pi
4+0+...4(2-n)=2n(3-n)
Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно
2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k)
3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1));
4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -?
4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем
= 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4)
Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2
k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)=
=(5-2k)(k+1)=2(2.5-k)(k+1)
Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во
1) Сначала решим уравнение. x/2 = (-1)^n * (pi/3) + pi n.
x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z
Если n - четное, т.е. n=2k, то x/2 = pi/3 + 2pi k, x = 2pi/3 + 4pi k. Если n - нечетное, т.е. n = 2k + 1, то x/2 = -pi/3 +(2k+1) pi = -pi/3 +2pi k + pi = 2pi/3 + 2pi k,
x = 4pi/3 + 4pi k
2) Решим неравенство. Так основание pi>1, то x - 4pi < pi, x < 5pi. ОДЗ неравенства:
x - 4pi > 0, x>4pi. Совмещаем выделенные неравенства: 4pi < x < 5pi
3) Отбор корней. а) 4pi < 2pi/3 + 4pi k < 5pi, 4 < 2/3 +4k < 5, 12 < 2 + 12k < 15,
10 <12k < 13, 5/6 < k < 13/12. Отсюда k = 1 и x = 2pi/3 + 4pi = 14pi/3
б) 4pi < 4pi/3 + 4pi k < 5pi, 4 < 4/3 +4k < 5, 12 < 4 +12k < 15, 8 < 12k < 11,
2/3 < k < 11/12, так как к - целое число, то здесь решений нет.
Тогда ответ: а) решение уравнения x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z
б) корни, удовлетворяющие логарифмическому неравенству x = 14pi/3