Пусть первому крану потребуется Х часов, тогда второму (Х-5) часов. Примем работу за единицу, тогда скорость работы первого крана равна 1/Х, а второго 1/(Х-5). При совместной работе их скорости складываются. Т. е. общая скорость равна 1/Х + 1/(Х-5). А при совместной работе они будут тратить 1/(1/Х + 1/(Х-5)) часов. Получаем уравнение: 1/(1/Х + 1/(Х-5)) = 6 1/Х + 1/(Х-5) = 1/6 1/Х + 1/(Х-5) - 1/6 = 0 (6(Х-5)+6Х-Х (Х-5))/(6Х (Х-5)) = 0 6(Х-5)+6Х-Х (Х-5) = 0; причем Х не равен 0 и не равен 5 (т. к. он был в знаменателе) 6Х-30+6Х-Х^2 + 5Х = 0 Х^2 - 17Х + 30 = 0 Х1,2 = (17+-sqrt(289-120))/2 Х1,2 = (17+-13)/2 Х1 = 15; Х2 = 2. Если Х=15, то Х-5=10 Если Х=2, то Х-5=-3 - этот ответ не подходит. ответ: первому потребуется 15 часов; второму - 10 часов.
Пусть треугольник АВС. Высота ВК медиана ВМ. Т.к. углы АВК=углу КВМ , то ВК не только высота , но и биссектриса . Значит треугольник АВМ равнобедренный АВ=ВМ КВ будет и медианой , значит АК=КМ. Но по условию ВМ медиана, значит АМ=МС . Тогда МС=2 КМ. Рассмотрим треугольник КВС. В нём ВМ биссектриса по условию, т.к. по условию три угла равны АВК=КВМ=МВС. Биссектриса внутреннего угла делит противоположну сторону на отрезки, пропорциональные прилежащим сторонам ВК:ВС=КМ:МС= 1:2. Тогда ВС в 2 раза больше ВК. А в прямоугольном треугольнике с острым углом в 30 градусов гипотенуза в 2 раза больше катета, противолежащего этому углу. Тогда угол ВСА=30 градусов. Угол КВС =60 гр. Тогда угол АВС состоит из трёх равных углов и каждый по 30 гр. Угол АВС=90гр. Угол ВАС=60 гр.
Биссектриса внутреннего угла делит противоположну сторону на отрезки, пропорциональные прилежащим сторонам ВК:ВС=КМ:МС= 1:2. Тогда ВС в 2 раза больше ВК. А в прямоугольном треугольнике с острым углом в 30 градусов гипотенуза в 2 раза больше катета, противолежащего этому углу. Тогда угол ВСА=30 градусов. Угол КВС =60 гр. Тогда угол АВС состоит из трёх равных углов и каждый по 30 гр. Угол АВС=90гр. Угол ВАС=60 гр.