Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
витка9
17.07.2020 19:58 •
Алгебра
решить чтоб проверить себя
Показать ответ
Ответ:
чсссвввввавшвневаа
04.04.2023 12:23
Решение
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0
(0 оценок)
Ответ:
Верче02
27.11.2020 06:29
B1 + b1q^3 = -49
b1q + b1q^2 = 14 разделим первое уравнение на 2-е
(1 + q^3)/(q +q^2) = -7/2
(1+q)(1 -q +q^2)/q(1 +q) = -7/2
(1 -q +q^2) /q = -7/2
2(1 - q +q^2) = -7q
2 -2q +2q^2 +7q = 0
2q^2 +5q +2 = 0
D = b^2 -4ac = 25 -16 = 9
q1= -1/2, a) b1 + b1q^3 = -49 б) q2 =-2 b1 + b1q^3 = -49
b1 +b1*(-1/8) = -49 b1 + b1*(-8) = -49
7/8 b1 = -49 -7b1 = -49
b1 = -49: 7/8= -49*8/7= =56 b1 = 7
0,0
(0 оценок)
Популярные вопросы: Алгебра
Надя0301
12.02.2020 08:21
2) Яке з наведених рівнянь рівносильне рівнянню 2х = 8?А) х =16; Б) 4x+16= 0; В) -1=1; I ) 2x-8=0....
Jdjsjsbbsbsbдевочка
11.08.2022 23:50
Разложите многочлен на множители x^3+8-x^2-2x...
alena10003
23.03.2021 03:59
)2 гири и 3 гантели весят 47 кг,а 3 гири тяжелее 6 гантелей на 18 кг. сколько весит гиря и сколько весит гантель?...
Uuuuuu2006
02.04.2020 05:21
Укажіть кількість розв язків системи рівнянь х^+у^=4 у=х+2 а) 1 б) 2 в) 3 г) 4...
MariaStredinina
02.04.2020 05:21
Решите уравнение: 1) 3x^3 -12x=0 2) 49x^3+14x^2+x=0 3)x^3-5x^2-x+5=0. нужно сделать!...
KllaBer
02.04.2020 05:21
Найди наибольшее значение функции y=4x2 на отрезке [−1; 0]. ответ: y наиб=...
Aigerimmmmmmm
03.01.2023 20:29
Найти производную: sqrt x * (3x-1)...
Данил6270
03.01.2023 20:29
В15 одинаковых пакетов и 5 одинаковых коробок расфасовали 2400г конфет .в каждую коробку уместилось на 20 г конфет больше,чем в каждый пакет . сколько граммов конфет...
Vasiuk1055
03.01.2023 20:29
Моторная лодка против течения 24 км и вернулась обратно затратив на обратный путь на 20 минут меньше, чем при движении против течения. найти скорость локи в неподвижной...
lmarusia
14.09.2021 21:27
Найдите значение выражения sin200градусов + sin20градусов...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
b1q + b1q^2 = 14 разделим первое уравнение на 2-е
(1 + q^3)/(q +q^2) = -7/2
(1+q)(1 -q +q^2)/q(1 +q) = -7/2
(1 -q +q^2) /q = -7/2
2(1 - q +q^2) = -7q
2 -2q +2q^2 +7q = 0
2q^2 +5q +2 = 0
D = b^2 -4ac = 25 -16 = 9
q1= -1/2, a) b1 + b1q^3 = -49 б) q2 =-2 b1 + b1q^3 = -49
b1 +b1*(-1/8) = -49 b1 + b1*(-8) = -49
7/8 b1 = -49 -7b1 = -49
b1 = -49: 7/8= -49*8/7= =56 b1 = 7