В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Jacob888
Jacob888
10.03.2020 05:09 •  Алгебра

решить
(Cosx+1)(3cosx-7)=0

Показать ответ
Ответ:
Lopsiwk
Lopsiwk
24.12.2023 09:17
Чтобы решить уравнение (Cosx+1)(3cosx-7)=0, нужно найти значения x, при которых произведение двух скобок равно нулю. Для этого необходимо рассмотреть два случая: когда первая скобка равна нулю и когда вторая скобка равна нулю.

1) Рассмотрим первую скобку: Cosx + 1 = 0.
Чтобы найти значения x, при которых Cosx + 1 = 0, вычитаем 1 из обеих сторон уравнения:
Cosx = -1.
Значение Cosx равное -1 достигается, когда x = π.

2) Рассмотрим вторую скобку: 3cosx - 7 = 0.
Чтобы найти значения x, при которых 3cosx - 7 = 0, добавляем 7 к обеим сторонам уравнения:
3cosx = 7.
Затем делим обе стороны уравнения на 3:
cosx = 7/3.
Значение cosx равное 7/3 является недопустимым, так как косинус не может быть больше 1 или меньше -1. Поэтому вторая скобка не может быть равна нулю.

Итак, у нас есть одно решение: x = π.

Обоснование:

1) При подстановке x = π в уравнение (Cosx+1)(3cosx-7), мы получаем:
(Cos(π) + 1)(3cos(π) - 7) = (-1 + 1)(-3 - 7) = 0.

Значение x = π является решением уравнения, потому что при таком значении обе скобки равны нулю, и произведение этих скобок также равно нулю.

2) При проверке значения 7/3 для cosx, мы видим, что оно не может быть решением, так как косинус не может быть больше 1 или меньше -1.

Поэтому, решением уравнения (Cosx+1)(3cosx-7)=0 является только x = π.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота