Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
Решение системы уравнений v=12
z=15
Решить систему уравнений методом подстановки.
2)(z+v)/9 - (z-v)/3 =2
(2z-v)/6 - (3z+2v)/3= -20
Избавимся от дробного выражения, первое уравнение умножим на 9, второе на 6:
(z+v) - 3(z-v)=9*2
(2z-v) - 2(3z+2v)= 6*(-20)
z+v - 3z+3v=18
2z-v - 6z-4v= -120
Приводим подобные члены:
4v-2z=18
-4z-5v= -120
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-2z=18-4v
2z=4v-18/2
z=2v-9
-4(2v-9)-5v= -120
-8v+36-5v= -120
-13v= -120-36
-13v= -156
v= -156/-13
v=12
z=2*12-9
Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
2)(z+v)/9 - (z-v)/3 =2
(2z-v)/6 - (3z+2v)/3= -20
Избавимся от дробного выражения, первое уравнение умножим на 9, второе на 6:
(z+v) - 3(z-v)=9*2
(2z-v) - 2(3z+2v)= 6*(-20)
z+v - 3z+3v=18
2z-v - 6z-4v= -120
Приводим подобные члены:
4v-2z=18
-4z-5v= -120
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-2z=18-4v
2z=4v-18/2
z=2v-9
-4z-5v= -120
-4(2v-9)-5v= -120
-8v+36-5v= -120
-13v= -120-36
-13v= -156
v= -156/-13
v=12
z=2v-9
z=2*12-9
z=15
Решение системы уравнений v=12
z=15