В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
diko2009
diko2009
17.06.2021 17:17 •  Алгебра

Решить дифференциальное уравнение dy/dx-3y/x=e^x*x^3

Показать ответ
Ответ:
alinabilalova161
alinabilalova161
06.10.2020 21:19
Переписываем уравнение в виде y'-3*y/x-eˣ*x³=0. Это ЛДУ первого порядка, решаем его введением новых функций u=u(x) и v=v(x), таких, что y=u*v. Тогда y'=u'*v+u*v', и уравнение принимает вид: u'*v+u*v'-3*u*v/x-eˣ*x³=0, или v*(u'-3*u/x)+u*v'-eˣ*x³=0. Полагаем u'-3*u/x=0, тогда du/dx=3*u/x, или du/u=3*dx/x. Интегрируя, получаем ∫du/u=3*∫dx/x и ln/u/=3*ln/x/, откуда u=x³. Подставляя это выражение в уравнение u*v'=eˣ*x³, получаем уравнение x³*v'=eˣ*x³, или v'=dv/dx=eˣ. Отсюда dv=eˣ*dx. Интегрируя, находим v=∫eˣ*dx, или v=eˣ+C. Теперь находим y=u*v=x³*(eˣ+C). ответ: y=x³*(eˣ+C).
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота