1. a)5 < m < 15; 5*1/5 < 1/5 m < 15*1/5; 1 < 1/5 < 3
b) 5 < -2m < 15; 5*(-2) < -2m < 15*(-2); -10 < -2m < -30; -30 < -2m < -10
c) 5 < m-6 < 15; -5+6 < m-6 < -15+6 ; 1 < m-6 < -9; -9< m-6 < 1
2. a) 2.6 <√7 <2.7; 2.6*2 < 2√7 < 2.7*2 ; 5.2 < √7 < 5.4
b)- 2.6 <-√7 < -2.7; -2,7 < -√7 < -2,6
c) 2.6 <√7 <2.7; 2+2.6 < 2+√7 < 2+2.7; 4.6 < √7 < 4.7
d)2.6 <√7 <2.7; 3-2.6 < 3-√7 <3-2.7; 0.4 <;3-√7 <0.3; 0.3 < 3-√7 < 0.4
10 сек.
Объяснение:
Длина замкнутой трассы S = 120 м. Есть три машинки.
Их скорости v1 = 12 м/с, v2 = 24 м/с, v3 = (v1+v2)/2 = (12+24)/2 = 18 м/с.
Первая машинка проезжает каждый круг за:
t1 = S/v1 = 120/12 = 10 сек.
И сделала n кругов.
Третья подождала время t, а затем проезжает каждый круг за:
t3 = S/v3 = 120/18 = 20/3 сек = 6 2/3 сек.
И сделала k кругов.
Вторая машинка подождала такое же время t после старта третьей, и 2T после старта первой, а затем проезжает каждый круг за:
t2 = S/v2 = 120/24 = 5 сек.
И сделала m кругов.
И в итоге все три машинки приехали к месту старта одновременно.
Время их пути:
T = 10n = 2t + 5m = t + 20/3*k
Так как числа 10n и 2t + 5m очевидно целые, то ясно, что k кратно 3.
Пусть k = 3, тогда:
2t + 5m = t + 20/3*3 = t + 20
t + 5m = 20
Наименьшее целое m = 1, тогда t = 20 - 5m = 20 - 5 = 15 сек.
10n = t + 20 = 15 + 20 = 35, тогда n нецелое, не подходит.
Возьмем m = 2, тогда t = 20 - 5m = 20 - 5*2 = 10 сек.
Время второй машинки:
T = 2t + 5m = 2*10 + 5*2 = 20 + 10 = 30 сек.
Время третьей машинки:
T = t + 20/3*k = 10 + 20/3*3 = 10 + 20 = 30 сек.
10n = T + 20 = 10 + 20 = 30
n = 30/10 = 3.
Время первой машинки:
T = 10n = 10*3 = 30 сек.
В итоге они все три встретились на старте через 30 сек.
1. a)5 < m < 15; 5*1/5 < 1/5 m < 15*1/5; 1 < 1/5 < 3
b) 5 < -2m < 15; 5*(-2) < -2m < 15*(-2); -10 < -2m < -30; -30 < -2m < -10
c) 5 < m-6 < 15; -5+6 < m-6 < -15+6 ; 1 < m-6 < -9; -9< m-6 < 1
2. a) 2.6 <√7 <2.7; 2.6*2 < 2√7 < 2.7*2 ; 5.2 < √7 < 5.4
b)- 2.6 <-√7 < -2.7; -2,7 < -√7 < -2,6
c) 2.6 <√7 <2.7; 2+2.6 < 2+√7 < 2+2.7; 4.6 < √7 < 4.7
d)2.6 <√7 <2.7; 3-2.6 < 3-√7 <3-2.7; 0.4 <;3-√7 <0.3; 0.3 < 3-√7 < 0.4
10 сек.
Объяснение:
Длина замкнутой трассы S = 120 м. Есть три машинки.
Их скорости v1 = 12 м/с, v2 = 24 м/с, v3 = (v1+v2)/2 = (12+24)/2 = 18 м/с.
Первая машинка проезжает каждый круг за:
t1 = S/v1 = 120/12 = 10 сек.
И сделала n кругов.
Третья подождала время t, а затем проезжает каждый круг за:
t3 = S/v3 = 120/18 = 20/3 сек = 6 2/3 сек.
И сделала k кругов.
Вторая машинка подождала такое же время t после старта третьей, и 2T после старта первой, а затем проезжает каждый круг за:
t2 = S/v2 = 120/24 = 5 сек.
И сделала m кругов.
И в итоге все три машинки приехали к месту старта одновременно.
Время их пути:
T = 10n = 2t + 5m = t + 20/3*k
Так как числа 10n и 2t + 5m очевидно целые, то ясно, что k кратно 3.
Пусть k = 3, тогда:
2t + 5m = t + 20/3*3 = t + 20
t + 5m = 20
Наименьшее целое m = 1, тогда t = 20 - 5m = 20 - 5 = 15 сек.
10n = t + 20 = 15 + 20 = 35, тогда n нецелое, не подходит.
Возьмем m = 2, тогда t = 20 - 5m = 20 - 5*2 = 10 сек.
Время второй машинки:
T = 2t + 5m = 2*10 + 5*2 = 20 + 10 = 30 сек.
Время третьей машинки:
T = t + 20/3*k = 10 + 20/3*3 = 10 + 20 = 30 сек.
10n = T + 20 = 10 + 20 = 30
n = 30/10 = 3.
Время первой машинки:
T = 10n = 10*3 = 30 сек.
В итоге они все три встретились на старте через 30 сек.