График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков
1. у=2х-7 2у+3х=0 Графиком каждого уравнения служит прямая линия, для построения которой нужно знать координаты двух точек. Составляем таблицы значений х и у для каждого из уравнений системы. В первом уравнении: при х=0 у=2*0-7 у=-7 При х=3 у=2*3-7 у=-1 Во втором уравнени: при х=0 2у+3*0=0 у=0 При х=3 2у+3*3=0 2у+9=0 2у=-9 у=-9:2 у=-4,5 Прямая у=2х-7 проходит через точки (0; -7) и (3; -1). Прямая 2у+3х=0 проходит через точки (0; 0) и (3; -4,5). Строим график, находим точки пересечения прямых. 2. 3х-у=-5 -5х+2у=1 В первом уравнении имеется переменная у с коэффициентом -1,значит легче всего выразить переменную у из первого уравнения. у=5+3х После того как выразили подставляем во второе уравнение 5+3х вместо переменной у: -5х+2(5+3х)=1 Решаем полученное уравнение с одной переменной. -5х+10+6х=1 х=1-10 х=-9 Решением системы уравнения являются точки пересечений графиков. Значит надо найти x и у, потому что точка пересечения состоит из x и y. Найдем y у=5+3(-9) у=5-27 у=-22 ответ: (-9; -22). 3. 3х+2у=-27 -5х+2у=13 Выбираем переменную у. Из первого уравнения вычитаем второе, чтобы избавиться от переменной у.Решаем линейное уравнение. (3х+2у)-(-5х+2у)=-27-13 3х+2у+5х-2у=-40 8х=-40 х=-40:8 х=-5 .Находим у. Подставляем в любое из уравнений найденный х, например в первое уравнение. 3х+2у=-27 3(-5)+2у=-27 2у-15=-27 2у=-27+15 2у=-12 у=-12:2 у=-6 ответ: (-5; -6). 4. Обозначим стороны прямоугольника как х и у. Периметр прямоугольника равен: Р=2(х+у). Согласно условию задачи: 2(х+у)=48. х+у=48:2 х+у=24 Если одну его сторону увеличить в 2 раза,а другую уменьшить на 6 см,то периметр нового прямоугольника будет равен 64: Одна сторона равна 2х, вторая - (у-6). Находим периметр нового прямоугольника: 2*2х+2(у-6)=64 Решаем систему линейных уравнений: х+у=24 2*2х+2(у-6)=64 Из первого уравнения находим х: х=24-у Подставляем значение х во второе уравнение: 4(24-у)+2у-12=64 96-4у+2у-12=64 -2у+84=64 -2у=-20 у=10 Теперь находим значение х: х=24-10 х=14 ответ: стороны прямоугольника равны 14 и 10 см.
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков
Объяснение:
2у+3х=0
Графиком каждого уравнения служит прямая линия, для построения которой нужно знать координаты двух точек. Составляем таблицы значений х и у для каждого из уравнений системы.
В первом уравнении: при х=0 у=2*0-7
у=-7
При х=3 у=2*3-7
у=-1
Во втором уравнени:
при х=0 2у+3*0=0
у=0
При х=3 2у+3*3=0
2у+9=0
2у=-9
у=-9:2
у=-4,5
Прямая у=2х-7 проходит через точки (0; -7) и (3; -1).
Прямая 2у+3х=0 проходит через точки (0; 0) и (3; -4,5).
Строим график, находим точки пересечения прямых.
2. 3х-у=-5
-5х+2у=1
В первом уравнении имеется переменная у с коэффициентом -1,значит легче всего выразить переменную у из первого уравнения.
у=5+3х
После того как выразили подставляем во второе уравнение 5+3х вместо переменной у:
-5х+2(5+3х)=1
Решаем полученное уравнение с одной переменной.
-5х+10+6х=1
х=1-10
х=-9
Решением системы уравнения являются точки пересечений графиков. Значит надо найти x и у, потому что точка пересечения состоит из x и y. Найдем y
у=5+3(-9)
у=5-27
у=-22
ответ: (-9; -22).
3. 3х+2у=-27
-5х+2у=13
Выбираем переменную у. Из первого уравнения вычитаем второе, чтобы избавиться от переменной у.Решаем линейное уравнение.
(3х+2у)-(-5х+2у)=-27-13
3х+2у+5х-2у=-40
8х=-40
х=-40:8
х=-5
.Находим у. Подставляем в любое из уравнений найденный х, например в первое уравнение.
3х+2у=-27
3(-5)+2у=-27
2у-15=-27
2у=-27+15
2у=-12
у=-12:2
у=-6
ответ: (-5; -6).
4. Обозначим стороны прямоугольника как х и у.
Периметр прямоугольника равен: Р=2(х+у).
Согласно условию задачи:
2(х+у)=48.
х+у=48:2
х+у=24
Если одну его сторону увеличить в 2 раза,а другую уменьшить на 6 см,то периметр нового прямоугольника будет равен 64:
Одна сторона равна 2х, вторая - (у-6).
Находим периметр нового прямоугольника:
2*2х+2(у-6)=64
Решаем систему линейных уравнений:
х+у=24
2*2х+2(у-6)=64
Из первого уравнения находим х:
х=24-у
Подставляем значение х во второе уравнение:
4(24-у)+2у-12=64
96-4у+2у-12=64
-2у+84=64
-2у=-20
у=10
Теперь находим значение х:
х=24-10
х=14
ответ: стороны прямоугольника равны 14 и 10 см.