В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
787363
787363
15.06.2022 09:08 •  Алгебра

решить дроби хоть что нибудь

Показать ответ
Ответ:
Алуопо
Алуопо
24.01.2021 07:31

площадь прямоугольного треугольника равна половине произведения его катетов, поэтому нам надо найти катеты треугольника. если известен периметр 30 см и гипотенуза. то сумма двух катетов равна 30 - 13 = 17 (см).  

пусть один катет равен х см, тогда второй катет равен (17 - х) см. по теореме пифагора составим уравнение и решим его.

13^2 = x^2 + (17 - x)^2 - раскроем скобку по формуле квадрата разности двух выражений;

169 = x^2 + 289 - 34x + x^2;

2x^2 - 34x + 120 = 0 - поделим почленно на 2;

x^2 - 17x + 60 = 0;

d = b^2 - 4ac;

d = (- 17)^2 - 4 * 1 * 60 = 289 - 240 = 49; √d = 7;

x = (- b ± √d)/(2a)

x1 = (17 + 7)/2 = 24/2 = 12 (см) - длина первого катета, 17 - 12 = 5 (см) - длина второго катета;

x2 = (17 - 7)/2 = 10/2 = 5 (см) - длина первого катета, 17 - 5 = 12 (см) - длина второго катета.

s = 1/2 * 12 * 5 = 6 * 5 = 30 (см^2).

ответ. 30 см^2.

0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота