В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lailylaily
lailylaily
23.07.2022 19:38 •  Алгебра

Решить эту даны 10 натуральных чисел по порядку, когда убрали одно число, то сумма оставшихся чисел стала 961. найдите это число?

Показать ответ
Ответ:
dashponi2007
dashponi2007
03.10.2020 14:15
Пусть х - первое наименьшее число из 10 порядковых натуральных чисел.
Найдем сумму арифметической прогрессии этих чисел:
S_{n} = \frac{2 a_{1}+d(n-1) }{2} *n \\ \\ a_{1} =x; d=1; n=10. \\ \\ S_{10} = \frac{2 x+9 }{2} *10=10x+45
Сумма чисел без первого числа будет равна:
10х + 45 - х = 9х + 45
Если убрали не первое число, то полученная сумма больше, чем 961.
Составим неравенство и решим его:
9х + 45 > 961
9х > 961 - 45
9х > 916
х > 916 : 9
x > 101,777777778
Допустим, что первое наименьшее число х = 102,
тогда сумма всех 10 чисел равна:
S_{10} = \frac{2*102+9}{2} *10=1065 \\ \\
1065 - 961 = 104 - число, которое убрали.
ответ: 104.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота