при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон: для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
задание 9
пусть ширина х,тогда длина х+0,25х составим уравнение
х+х+0,25х=54:2
2,25х= 27
х=27:2,25
х=12 см ширина
12+12*0,25=12+3=15 см длина
12*15= 180 кв см площадь
задание 10
1)сумма восьми чисел 5,2*8= 41,6
пусть искомое число х,составим уравнение
41,6+х=5,7*9
41,6+х=51,3
х=51,3-41,6
х= 9,7 искомое число
задание 5 ответ: х= - 0,5
задание 4 ответ: вариант 2
задание 8
/4х/=5,6
решение разбивается на отдельные случаи
случай 1
4х=5.6
х=5,6:4
х= 1,4
случай 2
- 4х=5,6
х=5,6:(-4)
х= - 1,4
ответ х=1,4;х=-1,4
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон:
для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1)
2) треугольник тупоугольный