РЕШИТЬ ХОТЬ ЛЮБОЙ НОМЕР
1. Материальная точка движется прямолинейно по закону (где x— расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t = 9 с.
№ 2. Найти мгновенную скорость движения точки, если: s (t) = 2t + 2
№3. Найти производные функций:
1) y = x^-5 ( икс в степени минус 5)
2) y = х^-2/7
3) y = х^14
4) y =(5x-3)^2
5) y =(3x)^3
6) y= 2x^3 -4x^2 + 5x -12
7) y=(х^2 - х)(х^3 + х)
8) y= sinx +4x
9) y= 3lnx - 2^x
№ 4 . Написать уравнение касательной к графику функции :
1). y= x^3 - x +3 в точке с абсциссой х=2
2). y=1/x в точке с абсциссой x=3
3) y=sinx в точке с абсциссой x=Pi/6
Решение задачи
Сразу приступить к вычислению объема прямоугольного параллелепипеда нельзя, так как неизвестны его длина и ширина.
Найдем длину, воспользовавшись тем, что она в 1 7/8 больше ширины:
1) 10 2/3 * 1 7/8 = 32/3 * 15/8 = 20 (см) - длина прямоугольного параллелепипеда.
Найдем высоту параллелепипеда, пользуясь тем что она составляет 15 % (0,15) длины:
2) 20 * 0,15 = 3 (см) - высота прямоугольного параллелепипеда.
Теперь можно приступить к вычислению объема:
3) 10 2/3 * 20 * 3 = 32/3 * 20 * 3 = 32 * 20 = 640 (см3) - объем параллелепипеда.
ответ: 640 см3.
1. Сложить два известных угла, результат вычесть из 180 градусов.
2. Вычесть известный угол из 90 градусов; сложить известный угол с 90, результат вычесть из 180 градусов.
3. 82
4. 98
5. Отрезок BH образует со стороной АС угол в 90 градусов.
6. Точка M разделит отрезок АС пополам.
7. Отрезок BE разделит угол В пополам.
8. Углы при основании равны; биссектриса, проведенная к основанию, является медианой и высотой
9. Касательная, проведенная к окружности, перпендикулярна радиусу, проведенному к точке касания; из любой точки, лежащей вне окружности, можно провести ровно две касательные к окружности; отрезок, соединяющий точку, лежащую вне окружности, с центром окружности, является биссектрисой угла между касательными, проведенными из этой точки к окружности; отрезки касательных (к одной окружности!), проведенных из одной точки, равны.
10. Медианы делятся в отношении 2:1 считая от вершин треугольника.