Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
давайте решим два линейных неравенства 1) 5(3x - 5) > 3(1 + 5x) - 10, 2) 5(4x - 1) < 5(2x + 3) + 2x используя тождественные преобразования.
давайте начнем с открытия скобок в обеих частях неравенства:
1) 5(3x - 5) > 3(1 + 5x) - 10;
5 * 3x - 5 * 5 > 3 * 1 + 3 * 5x - 10;
15x - 25 > 3 + 15x - 10;
группируем подобные в разных частях неравенства:
15x - 15x > 3 - 10 + 25;
x(15 - 15) > 18;
0 > 18.
неравенство не верное, значит нет решения неравенства.
2) 5(4x - 1) < 5(2x + 3) + 2x;
20x - 5 < 10x + 15 + 2x;
20x - 10x - 2x < 15 + 5;
8x < 20;
x < 20 : 8;
x < 2.5.
x принадлежит промежутку (- бесконечность; 2,5).