Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
Объяснение:
а) Допустим, такое число существует, обозначим цифры а и b.
{ a - b = 2
{ a^2 + b^2 = 52
Решаем подстановкой
{ a = b + 2
{ (b+2)^2 + b^2 = 52
Получаем:
b^2 + 4b + 4 + b^2 - 52 = 0
2b^2 + 4b - 48 = 0
b^2 + 2b - 24 = 0
(b + 6)(b - 4) = 0
Подходит только b = 4, тогда а = b + 2 = 6
ответ: это числа 46 и 64.
б) Обозначим двузначное число 10a + b, тогда по условиям:
{ 10a + b + 2(a+b) = 96
{ (10a+b)(a+b) = 952
Раскрываем скобки
{ 12a + 3b = 96
{ 10a^2 + ab + 10ab + b^2 = 952
Приводим подобные и сокращаем
{ 4a + b = 32
{ 10a^2 + 11ab + b^2 = 952
Можно решить подстановкой, получится квадратное уравнение.
Но проще рассуждениями. Из 1 уравнения ясно, что b кратно 4.
Потому что и 4а, и 32 делятся на 4, значит, и b делится.
Значит, b может равняться только 0, 4 или 8. Проверяем варианты:
1) b = 0; 10a^2 + 0 + 0 = 952; тогда a^2 = 95,2 - не подходит.
2) b = 4; 10a^2 + 44a + 16 = 952;
10a^2 + 44a - 936 = 0
D/4 = 22^2 + 10*936 = 484 + 9360 = 9844 ≈ 99,21 - не подходит
3) b = 8; 10a^2 + 88a + 64 - 952 = 0
10a^2 + 88a - 888 = 0
D/4 = 44^2 + 8880 = 1936 + 8880 = 10816 = 104^2
a = (-44 + 104)/10 = 60/10 = 6
ответ: 68
Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов:
Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.