Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
1. Принимаем за х величину одного из чисел, за у значение другого числа.
2. Составим два уравнения:
(1) х + у = 18; х = 18 - у;
(2) ху = 65;
3. Подставляем значение х = 18 - у из первого уравнения во второе уравнение:
(18 - у)у = 65;
18у - у² = 65;
у² - 18у + 65 = 0;
Первое значение у = (18 + √324 + 4 х 65)/2 = (18 + √64)/2 = (18 + 8)/2 = 13.
Второе значение у = (18 - 8)/2 = 5.
Первое значение х = 18 - 13 = 5.
Второе значение х = 18 - 5 = 13.
ответ: значение одного из чисел 5, другого 13.
Объяснение: