Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Объяснение:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
Пусть х км - расстояние которое велосипедист проехал по лесной дороге, тогда (х-40) км это расстояние которое велосипедист проехал по шоссе. t=2 часа - это время сколько велосипедист ехал по лесной дороге t=1 час-это время сколько велосипедист ехал по шоссе. Скорость велосипедиста по лесной дороге равна расстояние разделить на время (s/t=v) тогда его скорость равна (х/2) км/ч. Скорость велосипедиста по шоссе тогда равна ((40-х)/1)км/ч. В условии задачи сказано, что скорость по шоссе была на 4км/ч больше, тогда мы можем составить уравнение: скорость велосипедиста по лесной дороге плюс 4 км/ч получаем скорость велосипедиста по шоссе. (Х/2+4=40-х) решаем это уравнение домножаем все уравнение на два получаем (х+8=80-2х) получаем 3х=72, х=24 (км) это расстояние которое проехал велосипедист по лесной дороге подставляем х в скорость велосипедиста и находим: (24/2=12 км/ч скорость велосипедиста по лесной дороге; 40-24= 16 км/ч скорость велосипедиста по шоссе) ответ : 16 км/ч по шоссе и 12 км/ч по лесной дороге! Удачи тебе:)
ответ:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!
Объяснение:Привет!
Первоначально надо найти корни квадратного уравнения в числителе дроби
Корни квадратного уравнения можно решить последовательно рассчитывая дискриминант, значение которого должно быть больше или равно нулю (при нуле x1=x2), после - значения корней.
а*X^2+b*X+c=0
D=b*b-4*a*c ; x1=[-b-(D^(1/2))]/(2*a) и x2=[-b+(D^(1/2))]/(2*a)
Если D=0, то x1,2=-b/(2*a)
Теперь конкретно:
1) Числитель дроби
3x2 -7x +2=0
D=(-7)*(-7)-4*2*3=49-24=25
x1=[7-5]/(2*3)=2/6=1/3 и x2=[7+5]/(2*3)=12/6=2
3x2 -7x +2=(3x-1)*(x-2)
2) Знаменатель дроби
2-6х=2*(1-3х) Вынесем -1 за скобку, получим -2*(3x-1)
Имеем дробь [(3x-1)*(x-2)]/[-2*(3x-1)]
Здесь можно сократить на (3x-1)
После сокращения получаем [(x-2)]/[-2] или -0,5*(x-2)
ОТВЕТ: -0,5*(x-2)
Успехов!