1) удвоенное произведение 2*2х*3у=12ху,
2) сумма квадратов (2х)²+(3у)²=4х²+9у²,
3) квадрат разности (2х-3у)²=4х²-12ху=9у²,
4) разность квадратов (2х)²-(3у)²=(2х-3у)(2х+3у) ,
5) утроенное произведение этих выражений 3*2х*3у=18ху,
6) утроенное произведение квадрата первого выражения
на второе 3(2х)²*3у=36х²у,
7) утроенное произведение первого числа на квадрат
второго 3*2х*(3у)²=54ху²,
8) сумма кубов(2х)³+(3у)³=(2х+3у)(4х²-6ху+9у²),
9) куб суммы (2х+3у)³=8х³+36х²у+54ху²+27у³,
10) разность кубов (2х)³-(3у)³=(2х-3у)(4х²+6ху+9у²), ,
11) куб разности (2х-3у)³=8х³-36х²у+54ху²-27у³, .
1)Координаты точек пересечения графиков функций (2; 5); (4;13)
2)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
1. Не строя графиков функций, найдите координаты точек пересечения графиков функций y=2x²-8x+13 и y=4x-3.
Левые части уравнений равны, приравняем правые и вычислим х:
2x²-8x+13=4x-3
2x²-8x+13-4x+3=0
2x²-12x+16=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-128)/4
х₁,₂=(12±√16)/4
х₁,₂=(12±4)/4
х₁=8/4
х₁=2
х₂=16/4
х₂=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
y=4x-3
у₁=4*х₁-3
у₁=4*2-3
у₁=5
у₂=4*х₂-3
у₂=4*4-3
у₂=13
Координаты точек пересечения графиков функций (2; 5); (4;13)
2. Найдите координаты точек пересечения параболы
y= -3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
1) удвоенное произведение 2*2х*3у=12ху,
2) сумма квадратов (2х)²+(3у)²=4х²+9у²,
3) квадрат разности (2х-3у)²=4х²-12ху=9у²,
4) разность квадратов (2х)²-(3у)²=(2х-3у)(2х+3у) ,
5) утроенное произведение этих выражений 3*2х*3у=18ху,
6) утроенное произведение квадрата первого выражения
на второе 3(2х)²*3у=36х²у,
7) утроенное произведение первого числа на квадрат
второго 3*2х*(3у)²=54ху²,
8) сумма кубов(2х)³+(3у)³=(2х+3у)(4х²-6ху+9у²),
9) куб суммы (2х+3у)³=8х³+36х²у+54ху²+27у³,
10) разность кубов (2х)³-(3у)³=(2х-3у)(4х²+6ху+9у²), ,
11) куб разности (2х-3у)³=8х³-36х²у+54ху²-27у³, .
1)Координаты точек пересечения графиков функций (2; 5); (4;13)
2)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
1. Не строя графиков функций, найдите координаты точек пересечения графиков функций y=2x²-8x+13 и y=4x-3.
Левые части уравнений равны, приравняем правые и вычислим х:
2x²-8x+13=4x-3
2x²-8x+13-4x+3=0
2x²-12x+16=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-128)/4
х₁,₂=(12±√16)/4
х₁,₂=(12±4)/4
х₁=8/4
х₁=2
х₂=16/4
х₂=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
y=4x-3
у₁=4*х₁-3
у₁=4*2-3
у₁=5
у₂=4*х₂-3
у₂=4*4-3
у₂=13
Координаты точек пересечения графиков функций (2; 5); (4;13)
2. Найдите координаты точек пересечения параболы
y= -3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
Координаты пересечения параболой оси Оу (0; 12)