Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Когда персонажи ели варенье втроем, то Малышу досталась 1/9 часть. Значит, Карлсон и Винни-Пух съели 1-1/9=8/9 варенья - в 8 раз больше, чем Малыш. Если бы ели только Малыш и Карлсон, то Малыш съел бы 1/4, а Карлсон 1-1/4=3/4. Следовательно, Карлсон съедает варенья столько, сколько съели бы 3 Малыша. Значит, когда ели все трое, Карлсон съел 3*1/9=3/9. Тогда Винни-Пух съел 8/9-3/9=5/9 всего варенья. Это означает, что Винни-Пух съедает как 5 Малышей. Следовательно, если есть будут только Малыш и Винни-Пух, то Малыш съест 1 часть, а Пух 5 частей. Значит Малышу достанется 1/6 от варенья.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Если бы ели только Малыш и Карлсон, то Малыш съел бы 1/4, а Карлсон 1-1/4=3/4. Следовательно, Карлсон съедает варенья столько, сколько съели бы 3 Малыша.
Значит, когда ели все трое, Карлсон съел 3*1/9=3/9. Тогда Винни-Пух съел 8/9-3/9=5/9 всего варенья. Это означает, что Винни-Пух съедает как 5 Малышей.
Следовательно, если есть будут только Малыш и Винни-Пух, то Малыш съест 1 часть, а Пух 5 частей. Значит Малышу достанется 1/6 от варенья.