Пусть рубашка стоит Х, пиджак У, брюки Z. Брюки на 30% дороже рубашки, т.е. стоят 130% от стоимости рубашки или
Z=1,3 *X.
Эти же брюки дешевле пиджака на 46%, т.е. их стоимость соcтавит 100%-22%=78% от стоимости пиджака, или
Z=0,78*Y.
Приравняем соотношения для Z, получим
1,3*Х = 0,78*У,
откуда Х/У = 0,78/1,3 = 0,6
Это означает, что стоимость рубашки составляет 60% от стоимости пиджака, или, другими словами, что рубашка на 100%-60%=40% дешевле, чем пиджак. ответ: на 40% рубашка дешевле пиджака. Верхнее решение ошибочное. Решайте, как я написала
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Брюки на 30% дороже рубашки, т.е. стоят 130% от стоимости рубашки или
Z=1,3 *X.
Эти же брюки дешевле пиджака на 46%, т.е. их стоимость соcтавит 100%-22%=78% от стоимости пиджака, или
Z=0,78*Y.
Приравняем соотношения для Z, получим
1,3*Х = 0,78*У,
откуда Х/У = 0,78/1,3 = 0,6
Это означает, что стоимость рубашки составляет 60% от стоимости пиджака, или, другими словами, что рубашка на 100%-60%=40% дешевле, чем пиджак.
ответ: на 40% рубашка дешевле пиджака.
Верхнее решение ошибочное. Решайте, как я написала
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: