решить контрольную работу по Алгебре:
1)Знайдіть корінь рівняння: 2(х + 1) + 4х = 6(х + 3).
2)Знайдіть три будь-яких розв’язки рівняння:
1) х + у = – 3; 2) х – 2у = 5.
3) З міста до села турист йшов зі швидкістю 4 км/год, а
повертався назад зі швидкістю 3 км/год. На весь шлях він
витратив 7 год. Знайдіть відстань від міста до села
4)Чи можна 90 книжок розмістити на трьох полицях так, щоб
на третій було на 3 книжки більше, ніж на другій, і на 5 книжок
менше, ніж на першій?
5)Побудуйте графік рівняння: 2(x + у) – Зу = 1.
0.96, 2.88, 5.76 тонн соответственно
Объяснение:
20% это 1/5 от 12 тонн. разделим 12 на 5 = 2.4 тонны отдали в школьную столовую (если будет другой процент то надо: общее количество разделить на 100 и умножить на проценты. В данном случае 12 / 100 = 0.12 0.12 * 20% = 2.4 увезли в шк.столовку. Осталось 9.6 тонн это 12 - 2.4 = 9.6. Их развезли в магазины 1:3:6 сколько частей? 1 + 3 + 6 = 10. Оставшийся картофель зазделим на сумму всех частей = 0,96 тонны. Теперь, развезём в магазины: одну часть в первый это будет 0.96 тонны, три части 0.96 * 3 = 2.88 тонны во втрой и шесть частей 0.96 * 6 = 5.76 в третий магазин. Можно проверить:
0.96 + 2.88 + 5.76 = 9.6 тонн
9.6 + 2.4 = 12 тонн
Немного теории. Систему уравнений можно записать в следующем виде:
A·x = b
где A - матрица коэффициентов, x - вектор-столбец переменных, b - вектор-столбец свободных членов.
Умножим эту систему на обратную матрицу коэффициентов A⁻¹ слева. Тогда:
A⁻¹·A·x = A⁻¹·b
x = A⁻¹·b
Таким образом, чтобы решить систему уравнений, нужно найти обратную матрицу коэффициентов и умножить ее на вектор-столбец свободных членов.
1) Обратная матрица
Будем искать обратную матрицу через алгебраические дополнения. Для начала найдем определитель матрицы A :
Найдем элементы матрицы алгебраических дополнений:
Тогда:
Транспонированная матрица алгебраических дополнений:
Обратная матрица:
2) Вектор-столбец переменных
ответ:x₁ = 0;
x₂ = 1;
x₃ = -1.