В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danil2009cot
danil2009cot
26.10.2022 11:06 •  Алгебра

решить корень 2х+6 - корень х+1=0

Показать ответ
Ответ:
залина061
залина061
08.08.2020 01:37

Объяснение:

Касательная к графику функции f, дифференцируемой в точке xо, - это прямая, проходящая через точку (xо; f(xо)) и имеющая угловой коэффициент f ′(xо).  

Угловой коэффициент имеет прямая вида y = kx + b.  Коэффициент k и является угловым коэффициентом этой прямой.

Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс:  k = tgα

 Здесь угол α – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).

Угловой коэффициент касательнойУгловой коэффициент касательнойУгловой коэффициент касательнойУгловой коэффициент касательной

Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).

Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).

Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).

Если угол наклона прямой равен 90º (π/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c, где c – некоторое действительное число (рис.4).

Уравнение касательной к графику функции y = f(x) в точке xо:

y = f(xо) + f ′(xо) (x – xо)

Алгоритм решения уравнения касательной к графику функции y = f(x):

Вычислить f ( x0 )

Вычислить производные f '( x)  и f '( x0 )

Внести найденные числа x0, f ( x0 ) ,f '( x0 )  в уравнение касательной и решить его

Пример: Найдем уравнение касательной к графику функции f(x) = x3 – 2x2 + 1 в точке с абсциссой 2.

Решение.

Следуем алгоритму.

1) Точка касания xо равна 2. Вычислим f(xо):

f(xо) = f(2) = 23 – 2 ∙ 22 + 1 = 8 – 8 + 1 = 1

2) Находим f ′(x). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х2 = 2х, а х3 = 3х2. Значит:

f ′(x) = 3х2 – 2 ∙ 2х = 3х2 – 4х.

Теперь, используя полученное значение f ′(x), вычислим f ′(xо):

f ′(xо) = f ′(2) = 3 ∙ 22 – 4 ∙ 2 = 12 – 8 = 4.

3) Итак, у нас есть все необходимые данные: xо = 2, f(xо) = 1, f ′(xо) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:

у = f(xо) + f ′(xо) (x – xо) = 1 + 4 ∙ (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.

ответ: у = 4х – 7.

0,0(0 оценок)
Ответ:
MissVika2007
MissVika2007
06.06.2023 09:15

Объяснение:

1

(c-3)(c+3)+9=(c²+3c-3c-9)+9=c²+3z-3z-9+9=c²

Первый пропуск: с²

Второй пропуск: 9

Третий пропуск: с²

В первом задании появляется какое-то "+3z-3z" не переживаем это в сумме даёт ноль поэтому ничего страшного.Выражение в скобках "+3с-3с" также даёт ноль в сумме.Остаётся с²-9+9 (если прибавить к этому выражению "+3z-3z" от этого ничего не изменится т.к "+3z-3z" равно нулю... Считается что мы прибавили ноль, а любое выражение к которому прибавили ноль не изменит свой состав.-9 и +9 в сумме также дают нольответ: с² (третий пропуск)

2

(b+4)(b-2)-2b=b²-2b+4b-8-2b=b²-4b+4b-8=b²-8

-4b+4b=0

Самый последний пропуск: b²-8

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота