В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
isaevaa24
isaevaa24
28.04.2021 16:37 •  Алгебра

Решить логарифмическое неравенства 1) ㏒₀,₅ (2 - x) ≥ - 1 2) ㏒₉ (4 - 3x) ≥ 0,5 3) ㏒₂ (2x + 1) ≥ 4

Показать ответ
Ответ:
Dyadya11
Dyadya11
03.10.2020 17:34
0,5^(-1)=2
1) log₀,₅(2-x)≥log₀,₅2,  0<0.5<1, то функция убывает то знак неравенства меняется на противоположный
2-x>0, x<2, х∈(-∞;2) - это ОДЗ 
2-x≤2
2-2≤x
x≥0
учитывая ОДЗ и полученное решение получаем ответ:х∈[0;2)
2) 0.5=log₉9^0.5=log₉3
основание 9>1, то функция возрастает и получаем 
4-3х≥3 и 4-3х>0 из двух неравенств получаем неравенство: 4-3х≥3
4-3≥3х
3х≤1
х≤1/3
ответ: х∈(-∞;1/3]
3) 4=log₂2^4=log₂16
a=2>0, то функция возрастает и ОДЗ: 2х+1>0, 2x>-1, x>-0.5, (-0.5;+∞)
2x+1≥16
2x≥15
x≥7.5, x∈[7.5;+∞)
ответ:[7.5;+∞)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота