ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2
x1=πn,n∈z
3π<πn<4π
3<n<4
нет решения
6cos²x-11cosx+4=0
cosx=a
6a²-11a+4=0
D=121-96=25
a1=(11-5)/12=1/2⇒cosx=1/2⇒x=11π/6+2πk,k∈z
3π<11π/6+2πk<4π
18<11+12k<24
7<12k<13
7/12<k<13/12
k=1⇒x=11π/6+2π=23π/6
a2=(11+5)/12=4/3⇒cosx=4/3>1 нетрешения
2)2сos²x+10sin2xcos2x+4sin²x+4cos²x=0/cos²x
4tg²x+10tgx+6=0
tgx=a
2a²+5a+3=0
D=25-24=1
a1=(-5-1)/4=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
x=2π-arctg1,5
a2=(-5+1)/4=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
x=3π/4
3)3cos²x+5sinxcosx+2cos²x=0
5cosx*(cosx+sinx)=0
cosx=0⇒x=π/2+πn,n∈z
x=5π/2
cosx+sinx=0/cosx
tgx+1=0
tgx=-1⇒x=-π/4+πm,m∈z
x=7π/4
ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
Получаем
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2