В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Диана19371
Диана19371
13.10.2020 00:31 •  Алгебра

решить любые три или дайте ссылку где можно найти решение. Заранее

Показать ответ
Ответ:
Vasiliska555999
Vasiliska555999
01.03.2022 11:00

Для отыскания наибольшего(наименьшего) значения функции существует один и тот же приём:

1) ищем производную.

2) приравниваем её к нулю и ищем корни.

3) смотрим , какие корни входят в указанный промежуток.

4)ищем значения данной функции на концах указанного  промежутка и в точках, входящих в указанный промежуток.

5) пишем ответ.

Начали.

y = x³ -3x² +7x -5            [1;4]

y' = 3x² -6x +7

3x² -6x +7 = 0

D<0  корней нет

х = 1

у = 3*1² -6*1 +7 *1 -5 = -1

х = 4

у = 3*4³ -3*4²+7*4 -5 = 192 - 48 +28 -5 = 163

ответ: max y = 163

           min y = -1

0,0(0 оценок)
Ответ:
лолпрапти
лолпрапти
06.05.2022 08:44

представим

c*sin^2(x)=c*(1-cos^2(x))

2*sinx*cosx=sin(2x)

тогда получим:

(a-c)*cos^2(x)+b*sin(2x)+c

применим формулу понижения степени:

cos^2(x)=(1+cos(2x))/2

1/2* (a-c)*(1+cos(2x)) +b*sin(2x)+c

1/2*(a-c)*cos(2x)+b*sin(2x)+c+a/2-c/2

1/2* (a-c)*cos(2x)+b*sin(2x)+1/2* (a+c)

Пусть (a-c)/2=m ; (a+c)/2=n для  удобства.(m,n-абсолютно произвольны)

m*cos(2x)+b*sin(2x)+n

Применим метод вс аргумента:

√(m^2+b^2)*(m/√(m^2+b^2)  *cos(2x)+b/√(m^2+b^2) *sin(2x) )+n

m/√(m^2+b^2)=sin(s)

b/√(m^2+b^2)=cos(s)

Тогда получим:

√(m^2+b^2)*sin(2x+s)+n

√(m^2+b^2)=√( (a-c)^2/4 + b^2)

Я  так понимаю что a,b,с  здесь  не переменные ,а просто константы,тк   ясно что тогда наибольшего значения существовать не будет  ибо можно брать сколь угодно большое значение  b и выражение будет стремится к бесконечности,или  так же  брать сколь угодно малое n чтобы значение стремилось к -бесконечности.

Если же считать,что a,b,с  просто константы, то максимум  будет когда

sin(2x+s)=1, а минимум когда sin(2x+s)=-1 (синус определен от -1  до 1)

Тогда максимум:

(a+c)/2 +√( (a-c)^2/4 + b^2) (все выражение в скобках под корнем)

Минимум:

(a+c)/2 -√( (a-c)^2/4 + b^2)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота