Для начала напишем ОДЗ: х+1≠0 и х+2≠0, значит х≠-1 и х≠-2
данное уравнение может иметь два корня ОДИН корень уравнение имеет в следующих случаях: 1 случай а=-а 2а=0 а=0 2 случай один из корней числителя равен одному из корней знаменателя: х+а=х+1 а=1 3 случай х+а=х+2 а=2 4 случай х-а=х+1 а=-1 5 случай х-а=х+2 а=-2 при всех данных а уравнение имеет 1 корень. Отв:а=0; а=1; а=-1; а=2; а=-2
х+1≠0 и х+2≠0, значит
х≠-1 и х≠-2
данное уравнение может иметь два корня
ОДИН корень уравнение имеет в следующих случаях:
1 случай
а=-а
2а=0
а=0
2 случай
один из корней числителя равен одному из корней знаменателя:
х+а=х+1
а=1
3 случай
х+а=х+2
а=2
4 случай
х-а=х+1
а=-1
5 случай
х-а=х+2
а=-2
при всех данных а уравнение имеет 1 корень.
Отв:а=0; а=1; а=-1; а=2; а=-2
В этом можно убедиться:
1)пусть а=0, тогда
x²=0
x=0 -1 корень
2) пусть а=1, тогда
x-1=0
x=1 - 1 корень
3) пусть а=-1, тогда
x-1=0
x=1 - 1 корень
4) а=2
х-2=0
х=2 - 1 корень
5) а=-2
х-2=0
х=2 - 1 корень
3)f`(x)=39x²-7x
f`(0)=0
f`(-1)=39+7=46
f`(0)+f`(-1)=0+46=46
4)y`=-2x/2√(x²+1)³=-1/√(x²+1)³
5)y`=24(1/3x-64)^23 * 1/3=8(1/3x -64)^23
6)y`=1/cos²x
y`(π/3)=1/cos²π/3=1:1/4=4
7)tga=f`(x0)
f`(x)=6x²-5
f`(2)=6*4-5=24-5=19
tga=19
8)f(x)=x^8 -1
f`(x)=8x^7
9)y`=8cos3x*(-sin3x)*3=-24cos3xsin3x=-12sin6x
10)f(x)=1-4x²
f`(x)=-8x
f`(0,5)=-8*0,5=-4
11)y(1)=1+1=2
y`=4x³+1
y`(1)=4+1=5
Y=2+5(x-1)=2+5x-5=5x-3
12)f(1)=1
f`(x)=1/(2√x)
f`(1)=1/2
Y=1+1/2(x-1)=1+1/2x-1/2=1/2x+1/2
Y(31)=1/2*31+1/2=32*1/2=16
13)f`(x)=9-x²≥0
x²=9
x=+-3
_ + _
-3 3
x∈[-3;3]
14)(√x-4/√x)`=1/2√x +2/√x³=(x+4)/2√x³