Нули функции - это значения аргументы, при котором функция равна нулю : a) y= (x-1)/x² (x-1)/x² = 0 ОДЗ : x² ≠ 0 x ≠ 0 x - 1 = 0 x = 1 Нуль функции, это 1. Т.е., при x=1, y = 0 ответ : x=1
2) y=(x²+1)/(x-1) (x²+1)/(x-1)=0 ОДЗ : x-1 ≠ 0 x ≠ 1 x²+1 = 0 x² ≠ -1 x² не может быть равен отрицательному числу, т.к. число в квадрате всегда будет положительным, значит : x ∈ ∅ Функция нулей не имеет.
3) y=(3x-1)(x+7) (3x-1)(x+7) = 0 3x - 1 =0 и x + 7 = 0 3x = 1 | : 3 x = -7 x = 1/3 Нули функции x1 = 1/3, x2 = -7 Т.е., при x=1/3 и x=-7, y будет равен 0 ответ : x1 = 1/3, x2 = -7
a) y= (x-1)/x²
(x-1)/x² = 0 ОДЗ : x² ≠ 0
x ≠ 0
x - 1 = 0
x = 1
Нуль функции, это 1. Т.е., при x=1, y = 0
ответ : x=1
2) y=(x²+1)/(x-1)
(x²+1)/(x-1)=0 ОДЗ : x-1 ≠ 0
x ≠ 1
x²+1 = 0
x² ≠ -1
x² не может быть равен отрицательному числу, т.к. число в квадрате всегда будет положительным, значит :
x ∈ ∅
Функция нулей не имеет.
3) y=(3x-1)(x+7)
(3x-1)(x+7) = 0
3x - 1 =0 и x + 7 = 0
3x = 1 | : 3 x = -7
x = 1/3
Нули функции x1 = 1/3, x2 = -7
Т.е., при x=1/3 и x=-7, y будет равен 0
ответ : x1 = 1/3, x2 = -7
= ( log₀₎₂x - log₀₎₂25)*( log₀₎₂x - log₀₎₂25)= (log₀₎₂x +2)* (log₀₎₂x +2)=
= (log₀₎₂x +2)²= log₀₎₂²x +4log₀₎₂x +4
2)log₀₎₂²(x/5) = log₀₎₂(x/5)*log₀₎₂(x/5) = (log₀₎₂x - log₀₎₂5)*(log₀₎₂x - log₀₎₂5)=
=(log₀₎₂x +1)*(log₀₎₂x +1)= (log₀₎₂x +1)² = log₀₎₂²x + 2log₀₎₂x +1
3) Само уравнение:
log₀₎₂²x +4log₀₎₂x +4 +log₀₎₂²x + 2log₀₎₂x +1 = 1 (ОДЗ: x > 0)
log₀₎₂x = t
t² +4t +4 +t² +2t = 0
2t² +6t +4 = 0
t² +3t +2 = 0
По т. Виета
а) t = -2, ⇒ log₀₎₂x = -2, x = 0,2⁻² = 25
б) t = -1, ⇒ log₀₎₂x = -1, ⇒ x = 0,2⁻¹ = 5
ответ: 125