Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
Объяснение:
5/4 и 3/2 = (3 * 2) /(2 * 2) = 6/4; б) 2/3 = (2 * 5)/(3 * 5) = 10/15 и 2/15 в) 7/15 = (7 * 3)/(15 * 3) = 21/45 и 5/9 = (5 * 5)/(9 * 5) = 25/45; г) 1/6 = (1 * 5)/(6 * 5) = 6/30 и 3/10 = (3 * 3)/(10 * 3) = 9/30; д) 1/3 = (1 * 6)/(3 * 6) = 6/18 и 5/18 е) 5/8 = (5 * 3)/(8 * 3) = 15/24 и 2/3 = (2 * 8)/(3 * 8) = 16/24; ж) 1/2 = (1 * 15)/(2 * 15) = 15/30 и 2/15 = (2 * 2)/(15 * 2) = 4/30; з) 5/12 = (5 * 5)/(12 * 5) = 25/60 и 7/15 = (7 * 2)/(15 * 2) = 14/30; и) 3/10 = (3 * 10)/(10 * 10) = 30/100 и 33/100.
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность: