y=2x³+4x²-3√((x+1)/(x²-2))
y¹=6x²+8x-3·1/2√((x+1)/(x²-2))·((x+1)/(x²-2))¹=
=6x²+8x-(3/(2·√((x+1)·(x²-2)))·((x+1)¹·(X² -2)-(x+1)·(x²-2)¹)/(x²-2)²=
=6x²+8x-3(x²-2-2x(x+1))/2√((x+1)·(x²-2))·(x²-2)²=
=6x²+8x+3(x²+2x+2)/2√((x+1)(x²-2))·(x²-2)²
y=2x³+4x²-3√((x+1)/(x²-2))
y¹=6x²+8x-3·1/2√((x+1)/(x²-2))·((x+1)/(x²-2))¹=
=6x²+8x-(3/(2·√((x+1)·(x²-2)))·((x+1)¹·(X² -2)-(x+1)·(x²-2)¹)/(x²-2)²=
=6x²+8x-3(x²-2-2x(x+1))/2√((x+1)·(x²-2))·(x²-2)²=
=6x²+8x+3(x²+2x+2)/2√((x+1)(x²-2))·(x²-2)²