3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.
у=8х²-х⁴ + + + - - - + + + - - - - - -
у¹=16х-4х³= -4х(х²-4)=-4х(х-2)(х+2) (-2)(0)(2)
Там, где производная>0, там ф-ция возрастает, где у¹<0, там ф-ция убывает.
Ф-ция возрастает на интервалах: (-∞,-2), (0,2).
Ф-ция убывает на интервалах (-2,0), (2,∞).
Точки максимума х=-2, e(-2)=8*4-16=16; х=2, у(2)=8*4-16=16.
Точки максимума: ( -2,16) и (2,16)
Точки минимума: х=0 , у(0)=0
Чтобы найти наибольшее и наименбшее значения ф-ции на [ -1,3], вычислим на концах этого сегмента значеня ф-ции.
у(-1)=8*1-1=7
у(3)=8*9-81= -9
Сравним эти значения ф-ции и значения в точках (0,0) и (2,16).
Наибольшее значение у(наибол)=16 при х=2 на промежутке [-1,3].
Наименьшее значение у(наим)=-9 при х=3 на промежутке [-1,3].
3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.
у=8х²-х⁴ + + + - - - + + + - - - - - -
у¹=16х-4х³= -4х(х²-4)=-4х(х-2)(х+2) (-2)(0)(2)
Там, где производная>0, там ф-ция возрастает, где у¹<0, там ф-ция убывает.
Ф-ция возрастает на интервалах: (-∞,-2), (0,2).
Ф-ция убывает на интервалах (-2,0), (2,∞).
Точки максимума х=-2, e(-2)=8*4-16=16; х=2, у(2)=8*4-16=16.
Точки максимума: ( -2,16) и (2,16)
Точки минимума: х=0 , у(0)=0
Чтобы найти наибольшее и наименбшее значения ф-ции на [ -1,3], вычислим на концах этого сегмента значеня ф-ции.
у(-1)=8*1-1=7
у(3)=8*9-81= -9
Сравним эти значения ф-ции и значения в точках (0,0) и (2,16).
Наибольшее значение у(наибол)=16 при х=2 на промежутке [-1,3].
Наименьшее значение у(наим)=-9 при х=3 на промежутке [-1,3].