В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lavin997
lavin997
27.10.2021 15:38 •  Алгебра

Решить найти высоту конуса наименьшего объёма, описанного около цилиндра высоты h с радиусом основания r. (плоскости оснований конуса и цилиндра )

Показать ответ
Ответ:
Cekretcv
Cekretcv
07.10.2020 11:46
Пусть r, h - радиус основания и высота цилиндра,
R,H - радиус основания и высота конуса.
Из подобия треугольников находим:
r/(H-h) = R/H, откуда
R = r*H/(H-h).
Подставляем R в формулу для объема конуса:
V = (1/3)*H*п*R^2 = (п/3)*r^2*H^3/(H-h)^2.
Дифференцируем V по H:
dV/dH = (п*r^2)*(H^2/(H-h)^2 - (2/3)*H^3/(H-h)^3)=
=(п*r^2*H^2/(H-h)^2)*(1-(2/3)*H/(H-h)).
Приравнивая производную нулю. 
Отбрасываем решение H=0 так как H>h, и находим экстремум при H = 3*h. Этот единственный экстремум должен соответствовать минимуму.
То есть, объем описанного конуса минимален, когда высота конуса в три
раза больше высоты цилиндра.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота