если следовать точной обозначениям из задания при условии что n принимает только определенные значения (n=3k+1) то 1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) < 1/3
По условию, выражение -5с-с² принимает отрицательные значения, т.е. значения меньше нуля. Таким образом, задача сводится к решению неравенства -5с-с²<0 Решение: -5c-c²<0 (умножаем обе части неравенства на (-1), при этом знак меняется) c²+5c>0 (разложим на множители левую часть неравенства) c(c+5)>0 (далее решаем методом интервалов) + - + (-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ: с∈(-∞;-5)U(0;+∞)
Объяснение:
какое условие такой и ответ
1/(1*4) = (1/1 - 1/4)*1/3
1/(4*7) = (1/4 - 1/7)*1/3
1/(7*10) = (1/7 - 1/10)*1/3
1/((3k-2)*(3k+1)) = (1/(3k-2) - 1/(3k+1))*1/3
1/((3k+1)*(3k+4)) = (1/(3k+1) - 1/(3k+4))*1/3
1/1*4 + 1/4*7 +...+ 1/((3k-2)*(3k+1)) + 1/((3k+1)*(3k+4)) =
(1/1 - 1/4)*1/3 + (1/4 - 1/7)*1/3 + (1/7 - 1/10)*1/3 + + (1/(3k-2) - 1/(3k+1))*1/3 +(1/(3k+1) - 1/(3k+4))*1/3 =
= (1/1 )*1/3 - 1/(3k+4)*1/3 = 1/3 - 1/(3k+4)*1/3 < 1/3 - доказано
если следовать точной обозначениям из задания при условии что n принимает только определенные значения (n=3k+1) то
1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) < 1/3
Решение:
-5c-c²<0 (умножаем обе части неравенства на (-1),
при этом знак меняется)
c²+5c>0 (разложим на множители левую часть неравенства)
c(c+5)>0 (далее решаем методом интервалов)
+ - +
(-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ:
с∈(-∞;-5)U(0;+∞)