1) Ищем границы интегрирования -х² + х + 6 = х + 2 -х² = -4 х² = 4 х = +- 2 Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры. а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3 б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8 S = 56/3 - 8 = 4 2) Ищем границы интегрирования 4х -х² = х -х² +3х =0 х =0 х = 3 Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры. а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9 б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5 S = 9 - 4,5 = 4,5
У=х³ - кубическая функция, графиком явл. кубическая парабола. Свойства функции: 1. Область определения D(х)=(-∞; +∞) 2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная 4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей. 5. График функции проходит через начало координат х=0 у=0 т.(0;0) 6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба, 8. График функции всегда пересекает линию абсцисс хотя бы в одной точке, 9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола. Свойства функции у=х2 1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат 2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс. 3. Множеством значений функции у=х2 является промежуток [0; + ∞) 4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная). 5. На промежутке [0; + ∞) функция у=х2 возрастает 6. На промежутке (-∞; 0] функция у=х2 убывает 7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует. 8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.
-х² + х + 6 = х + 2
-х² = -4
х² = 4
х = +- 2
Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры.
а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3
б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8
S = 56/3 - 8 = 4
2) Ищем границы интегрирования
4х -х² = х
-х² +3х =0
х =0
х = 3
Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры.
а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9
б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5
S = 9 - 4,5 = 4,5
Свойства функции:
1. Область определения D(х)=(-∞; +∞)
2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная
4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей.
5. График функции проходит через начало координат х=0 у=0 т.(0;0)
6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба,
8. График функции всегда пересекает линию абсцисс хотя бы в одной точке,
9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола.
Свойства функции у=х2
1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат
2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции у=х2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная).
5. На промежутке [0; + ∞) функция у=х2 возрастает
6. На промежутке (-∞; 0] функция у=х2 убывает
7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует.
8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.