В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
НекоТян124
НекоТян124
28.03.2020 05:38 •  Алгебра

Решить неравенства с логарифмами и начертить интервал


Решить неравенства с логарифмами и начертить интервал

Показать ответ
Ответ:
amina24569
amina24569
20.06.2020 11:35

      Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами  - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.

     Если начать раскрашивать с первого нижнего углового треугольника  в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:  

а₁=1 (второй верхний ряд треугольников сверху:

а₂=9 (десятый ряд треугольников)

   Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)

S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.

    Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;

                                      В - закрашенный треугольник.

                             Маршрут=А+В=А+(А+1)=45+45+1

                             Маршрут = 91 зал

    Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и,  продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.

    Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.

   Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на  9 маленьких.


Замок в форме треугольника со стороной 10 метров разбит на 100 треугольных залов со сторонами 1 м. в
Замок в форме треугольника со стороной 10 метров разбит на 100 треугольных залов со сторонами 1 м. в
0,0(0 оценок)
Ответ:
valerya7000
valerya7000
12.12.2020 22:43

С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота