В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Nicalat
Nicalat
28.03.2021 22:45 •  Алгебра

Решить неравенство (1)/(sqrt(4x+1)-sqrt(2x+4))≥1

Показать ответ
Ответ:
Rimmakrasa
Rimmakrasa
24.05.2020 15:48

Сначала найдём ОДЗ(она ограниченна двумя корями(подкоренные больше 0)и одним знаменателем(он ≠0))

4х+1≥0 ⇒ х≥-1/4; 2х+4≥0⇒х+2≥0⇒х≥-2  ну и sqrt(4x+1)-sqrt(2x+4)≠0⇒4x+1≠2x+4⇒х≠1.5

Из этого ОДЗ нам известно, что возможные значения х ∈[-1/4;1.5)∨(1.5;+inf).

Ну и теперь: если знаменатель <0, то дробь отрицательна, т.е.<0 и <1, значит выражение под дробью обязнанно быть больше 0.

Далее мы можем сказать, что оно должно быть меньше или равно 1(т.к. иначе значение дроби меньше 1). Т.е. мы пришли к выражению:0<sqrt(4x+1)-sqrt(2x+4)<1

Первая часть решается элементарно и х>1.5; вторая часть возводится в квадрат и получаем: 4x+1 + 2sqrt(4x+1)*sqrt(2x+4)+2x+4<1(это можно делать спокойно, т.к. уже найденно условие положительности левой части неравенства)

после упрощения: 3х+2≤sqrt(4x+1)*sqrt(2x+4) повторно возведём в квадрат. и решит неполное квадратное уравнение, ответ: 0≤х≤6.

Теперь учтём все ранее найденные ограничения, и: х(∈1.5;6].

ответ:х∈(1.5;6]

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота