(2x+3)(2x+1)/(x-1)(x-4)>=0 Найдем значения "x", которые обнуляют скобки в числителе и знаменателе: 2x+3=0 => x=-1,5 2x+1=0 => x=-0,5 x-1=0 => x=1 x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4) + - + - + Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)
Найдем значения "x", которые обнуляют скобки в числителе и знаменателе:
2x+3=0 => x=-1,5
2x+1=0 => x=-0,5
x-1=0 => x=1
x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4)
+ - + - +
Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)
6x(x^2-4)=0
6x(x-2)(x+2)=0
6x=0 или x-2=0 или x+2=0
x=0 x=2 x=-2
ответ:x=0
x=2
x=-2
б). 25x^3- 10x^2 +x =0
x(25x^2-10x+1)=0
x(5x-1)^2=0
x=0 или (5x-1)^2=0
5x-1=0
5x=1
x=1/5
ответ:x=0
x=1/5
в). 2x^4 + 6x^3 – 8x^2- 24x = 0
2x^2(x^2-4)+6x(x^2-4)=0
(2x^2+6x)(x^2-4)=0
2x(x-2)(x+2)(x+3)=0
2x=0 или x-2=0 или x+2=0 или x+3=0
x=0 x=2 x=-2 x=-3
ответ:x=0
x=2
x=-2
x=-3