В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dimanebutov1
dimanebutov1
13.09.2020 02:27 •  Алгебра

Решить неравенство 3^{x^{2}} \cdot 5^{x-1}\geq 3

Показать ответ
Ответ:
Trasir
Trasir
08.10.2020 11:15
3^{x^{2}} * 5^{x-1}\geq 3
прологарифмируем обе части по основанию 3
3^{x^{2}} * 5^{x-1}\geq 3
\\\log_3(3^{x^{2}} * 5^{x-1})\geq\log_3 3
\\\log_3(3^{x^{2}})+\log_3(5^{x-1})\geq 1
\\x^2+(x-1)*\log_3 5\geq 1
\\x^2+(x-1)*\log_3 5-1\geq 0
\\x^2+x\log_3 5-\log_3 5- 1\geq 0
\\D=(\log_3 5)^2+4(\log_3 5+1)=(\log_3 5)^2+4\log_3 5+4=(\log_3 5+2)^2
\\x_1= \frac{-\log_3 5+\log_3 5 +2}{2} =1
\\x_2= \frac{-\log_3 5-\log_3 5 -2}{2} = \frac{-2\log_3 5-2}{2} =-\log_3 5-1=-\log_3 15
также -\log_3 15\ \textless \ 1
 используем метод интервалов
   +          -           +
-------[]------------[]--------->
  -log3(15)       1

x\in(-\infty;-\log_3 15]\cup[1;+\infty)
ответ: x\in(-\infty;-\log_3 15]\cup[1;+\infty)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота