Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а. Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а.
Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
давайте решим два линейных неравенства 1) 5(3x - 5) > 3(1 + 5x) - 10, 2) 5(4x - 1) < 5(2x + 3) + 2x используя тождественные преобразования.
давайте начнем с открытия скобок в обеих частях неравенства:
1) 5(3x - 5) > 3(1 + 5x) - 10;
5 * 3x - 5 * 5 > 3 * 1 + 3 * 5x - 10;
15x - 25 > 3 + 15x - 10;
группируем подобные в разных частях неравенства:
15x - 15x > 3 - 10 + 25;
x(15 - 15) > 18;
0 > 18.
неравенство не верное, значит нет решения неравенства.
2) 5(4x - 1) < 5(2x + 3) + 2x;
20x - 5 < 10x + 15 + 2x;
20x - 10x - 2x < 15 + 5;
8x < 20;
x < 20 : 8;
x < 2.5.
x принадлежит промежутку (- бесконечность; 2,5).