В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dostovalovaanast
dostovalovaanast
24.06.2020 17:45 •  Алгебра

Решить неравенство : log_2(x^2-4) -3*log_2((x+2)/(x-2)) > = 2

Показать ответ
Ответ:
ланя2
ланя2
09.09.2020 09:27
Log₂(x²-4)-3*log₂((x+2)/(x-2))≥2
log₂(((x-2)(x+2))-log₂((x+2)(x-2))³≥log₂4
ОДЗ: (x+2)(x-2)>0  x∈(-∞;-2)U(2;+∞)
log₂((x-2)(x+2)(x-2)³/(x+2)³))≥log₂4
log((x-2)⁴/(x+2)²)≥log₂4
(x-2)⁴/(x+2)²≥4
(x-2)⁴/(x+2)²-4≥0
((x-2)⁴-4*(x+2)²)/(x+2)²≥0
(x-2)⁴-(2*(x+2))²≥0
((x-2)²+2x+4)((x-2)²-2x-4)≥0
(x²-4x+4+2x+4)(x²-4x+4-2x-4)≥0
(x²-2x+8)(x²-6x)≥0
(x²-2x+1+7)*x*(x-6)≥0
((x-1)²+7)*x*(x-6)≥0
x*(x-6)≥0
-∞+0-6++∞
x∈(-∞;0]U[6;+∞)
Учитывая ОДЗ:
x∈(-∞;-2)U[6;+∞).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота