Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.
Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.
t²-3t-4=0
D=9+16=25 > 0, значит 2 корня
t₁ = (3+5)/2=4
t₂ = (3-5)/2 = -1
сделаем обратную замену
cos x=4 - не подходит, так как E(y)= [-1;1] -область значений функции косинус
cos x=-1, x=π+2πn, n∈Z
2) 2 cos²x - 5sinx+1 =0
2(1-sin²x) -5sinx+1=0
2 - 2sin²x -5sinx+1=0
2sin²x+5sinx-3=0
введем замену sinx =t, тогда получим
2t²+5t-3=0
D=25+24=49 >0 - значит 2 корня
t₁ =(-5-7)/4=-3
t₂ =(-5+7)/4 = 1/2, введем обратную замену
sin x =-3 - не подходит, так как E(y)= [-1;1] -область значений функции синус
sinx = 1/2, х =π/6 + 2πn и x= 5π/6 + 2πn , где n∈Z