Так как выражение (7а-3)² нечетное Значит выражение (7а-3) должно заканчиваться цифрами 1, 3, 5, 7, 9. Поэтому 7а должно соответственно заканчиваться 4, 6, 8, 0, 2. А само а заканчивается цифрой 2, 8, 4, 0, 6.
Теперь перебираем все пять вариантов окончания а: а) При а=...2 Получаем а²-1=...3 -нечетное не имеет смысл проверять далее в) При а=...2 Получаем а²+а+1=...7 -нечетное с) При а=...2 Получаем 5а+2=..2 -четное при а=...8 Получаем 5а+2=..2 -четное при а=...4 Получаем 5а+2=..2 -четное при а=...0 Получаем 5а+2=..2 -четное при а=...6 Получаем 5а+2=..2 -четное d) При а=...2 Получаем а³+1=...9 -нечетное е) При а=...2 Получаем 4а-3=...5 -нечетное
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)
Значит выражение (7а-3) должно заканчиваться цифрами 1, 3, 5, 7, 9.
Поэтому 7а должно соответственно заканчиваться 4, 6, 8, 0, 2.
А само а заканчивается цифрой 2, 8, 4, 0, 6.
Теперь перебираем все пять вариантов окончания а:
а) При а=...2 Получаем а²-1=...3 -нечетное
не имеет смысл проверять далее
в) При а=...2 Получаем а²+а+1=...7 -нечетное
с) При а=...2 Получаем 5а+2=..2 -четное
при а=...8 Получаем 5а+2=..2 -четное
при а=...4 Получаем 5а+2=..2 -четное
при а=...0 Получаем 5а+2=..2 -четное
при а=...6 Получаем 5а+2=..2 -четное
d) При а=...2 Получаем а³+1=...9 -нечетное
е) При а=...2 Получаем 4а-3=...5 -нечетное
Значит выражение С является четным.