Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Пусть в стелаже n полок. Задачу будем решать при формул арифметической прогрессии. аn = a1 +(n -1)d Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5 n - полок а1 =21 аn = 21 + (n - 1)*5 - книг на последней полке Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6 (n -1) - полок, т.к. полок на 1 меньше а1 =21 аn = 21 + ((n -1)- 1)*6 - книг на последней полке Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2 5n² + 37n = 6n² + 24n -30 n² - 13n -30 =0 Д = 169 +120 = 289 √Д = 17 n =(13 + 17)/2 = 15 ответ: в стелаже 15 полок.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...
Задачу будем решать при формул арифметической прогрессии.
аn = a1 +(n -1)d
Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5
n - полок
а1 =21
аn = 21 + (n - 1)*5 - книг на последней полке
Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6
(n -1) - полок, т.к. полок на 1 меньше
а1 =21
аn = 21 + ((n -1)- 1)*6 - книг на последней полке
Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2
5n² + 37n = 6n² + 24n -30
n² - 13n -30 =0
Д = 169 +120 = 289
√Д = 17
n =(13 + 17)/2 = 15
ответ: в стелаже 15 полок.